
CSCI 210: Computer Architecture

Lecture 35: Associative Caches

Stephen Checkoway

Oberlin College

Jan. 7, 2022

Slides from Cynthia Taylor

1



Announcements

• Problem Set 12 due next Friday

• Cache Lab (final project) due Friday, Jan. 21 at 16:00

• Office Hours today 13:30 – 14:30 

– On zoom



Cache Size vs Memory Size

Memory is 2048 times bigger than cache



Cache Misses

• On cache hit, CPU proceeds normally

• On cache miss

– Stall the CPU pipeline

– Fetch block from next level of hierarchy

– Instruction cache miss

• Restart instruction fetch

– Data cache miss

• Complete data access



Cache replacement policy

• On a hit, return the requested data

• On a miss, load block from lower level in the memory hierarchy 

and write in cache; return the requested data

• Policy: Where in cache should the block be written? (With 

direct-mapped caches, there’s only one possible location:

block_address % number_of_blocks_in_cache)



Cache policy for stores

• Policy choice for a hit: Where do we write the data?

– Write-back: Write to cache only

– Write-through: Write to cache and also to the next lowest level of the

memory hierarchy

• Policy choice for a miss

– Write-allocate: Bring the block into cache and then do the write-hit 

policy

– Write-around: Write only to memory



Store-hit policy: write-through

• Update cache block AND memory

• Makes writes take longer
– e.g., if base CPI = 1, 10% of instructions are stores, write to memory takes 100 

cycles
• Effective CPI = 1 + 0.1×100 = 11

• Solution: write buffer
– Holds data waiting to be written to memory

– CPU continues immediately
• Only stalls on write if write buffer is already full



Store-hit policy: write-back

• Only update the block in cache

– Keep track of whether each block is “dirty” 

(i.e., it has a different value than in 

memory)

• When a dirty block is replaced

– Write it back to memory

– Can use a write buffer to allow replacing 

block to be read first

• Faster than write-through, but more 

complex

V D Tag Data

1 0 0000420 FE FF 3C …

0

1 1 0012345 32 A0 5C …

0

0

1 0 000F3CB 00 00 00 …

0

0



Store-miss policy: write-allocate

• Read a block from memory (just like a load miss)

• Perform the write according to the store-hit policy (i.e., write in 

cache or write in both cache and memory)

• Good for when data is likely to be read shortly after being 

written (temporal locality)



Store-miss policy: write-around

• Only write the data to memory

• Good for initialization where lots of memory is written at once 

but won’t be read again soon



Store Policies
• Given either high store locality or low store locality, which policies might 

you expect to find?

• Write-allocate: create block in cache.  Write-around: don’t create block.  

Write-through: update cache + memory.  Write-back: update cache only.

Select

ion

High Locality Low Locality

Miss Policy Hit Policy Miss Policy Hit Policy

A Write-allocate Write-through Write-around Write-back

B Write-around Write-through Write-allocate Write-back

C Write-allocate Write-back Write-around Write-through

D Write-around Write-back Write-allocate Write-through

E None of the above



Common policy choices

• Write-back + write-allocate

– Dirty blocks are written to memory only when replaced

– Stores bring block into cache

– Subsequent loads/stores will cause cache hits (unless the block is 

evicted)

• Write-through + write-around

– Writes always go to memory

– Cache is mostly for loads



Associative Caches

• Direct Mapped

– Each block goes into 1 spot

– Only search one entry

– Associativity = 1

• What if we allow blocks to go

into more than one spot?



Associative Caches

• Fully associative

– Allow a given block to go in any 

cache entry

– Requires all entries to be 

searched at once

– Comparator per entry 

(expensive)



Associative Caches

• n-way set associative

– Each set contains n entries

– Block number determines which set

• (Block number) modulo (#Sets in cache)

– Search all entries in a given set at once

– n comparators (less expensive)



Spectrum of associativity for 8-entry cache



Memory addresses, block addresses, offsets

• Block size of 32 bytes (not bits!)

• 16-block, 2-way set associative cache

• Each address

– A (32 – 5)-bit block address (in purple and blue)

– A 5-bit offset into the block (in green)

• Block address can be divided into

– A (32 – 3 – 5)-bit tag (purple)

– A 3-bit cache index (blue)

0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1

V Tag Data V Tag Data

0 0

0 0

0 1 3F2084 …

0 0

0 0

1 15C9AC … 0

0 0

0 0



Given a 256-entry, 8-way set associative cache with a block size 

of 64 bytes, how many bits are in the tag, index, and offset?

Tag bits Index bits Offset bits

A 32 – 5 – 6 = 21 5 6

B 32 – 3 – 5 = 24 3 5

C 32 – 8 – 6 = 18 8 6

D 32 – 6 – 5 = 21 6 5

E 32 – 6 – 3 = 23 6 3



Given a 256-entry, fully associative cache with a block size of 64 

bytes, how many bits are in the tag, index, and offset?

Tag bits Index bits Offset bits

A 32 – 5 – 6 = 21 1 6

B 32 – 3 – 5 = 24 3 5

C 32 – 8 – 6 = 18 8 6

D 32 – 6 – 5 = 21 6 5

E 32 – 0 – 6 = 26 0 6



Replacement Policy

• Direct mapped: no choice

• Set associative
– Prefer non-valid entry, if there is one

– Otherwise, choose among entries in the set

– Goal:  Choose an entry we will not use in the future



Replacement Policy

• Least-recently used (LRU)

– Choose the one unused for the longest time
• Simple for 2-way, manageable for 4-way, too hard beyond that

• Random

– Gives approximately the same performance as LRU for high 
associativity



I-cache vs D-cache

• Separate caches for instruction memory and data memory

• I-cache: instruction cache

• D-cache: data cache



Measuring Cache Performance

• Components of CPU time

– Program execution cycles

• Includes cache hit time

– Memory stall cycles

• Mainly from cache misses

• With simplifying assumptions:

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 

´´=

´´=



Miss Cycles Per Instruction

Given

• I-cache miss rate = 2%

• D-cache miss rate = 4%

• Miss penalty = 100 cycles

• Base CPI (ideal cache) = 2

• Load & stores are 36% of instructions

I-cache D-cache

A .02 * 100 .04 * 100

B .02 .04

C .02 * .36 * 100 .04 * .36 * 100

D .02 * 100 .04 * .36 * 100



Cache Performance Example

• Given
– I-cache miss rate = 2%
– D-cache miss rate = 4%
– Miss penalty = 100 cycles
– Base CPI (ideal cache) = 2
– Load & stores are 36% of instructions

• Miss cycles per instruction
– I-cache: 0.02 × 100 = 2
– D-cache: 0.36 × 0.04 × 100 = 1.44

• Actual CPI = 2 + 2 + 1.44 = 5.44
– Ideal CPU is 2: 5.44/2 =2.72 times faster



Average Access Time

• Hit time is also important for performance

• Average memory access time (AMAT)

– AMAT = Hit time + Miss rate × Miss penalty

• Example

– hit time = 1 cycle, miss penalty = 20 cycles, I-cache miss rate = 5%

– AMAT =



Performance Summary

• When CPU performance increased

– Miss penalty becomes more significant

• Decreasing base CPI

– Greater proportion of time spent on memory stalls

• Increasing clock rate

– Memory stalls account for more CPU cycles

• Can’t neglect cache behavior when evaluating system 

performance



We need cache to be fast!

• Memory lookup time

• Hit rate

• Size 

• Frequency of collisions



Reading

• Next lecture:  More Caches!

– Section 6.4

• Problem Set 12 due Friday

• Cache Lab (final project) due at the time of the final exam 

(which this class doesn’t have)
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