CSCI 210: Computer Architecture
Lecture 35: Associative Caches

Stephen Checkoway
Oberlin College

Jan. 7, 2022
Slides from Cynthia Taylor

Announcements

* Problem Set 12 due next Friday

e Cache Lab (final project) due Friday, Jan. 21 at 16:00

e Office Hours today 13:30 - 14:30

— On zoom

Cache Size vs Memory Size

" UoDTOW Lllalyt awic o 1y

Configure to Order
Configure your MacBook Pro with these options, only at apple.com:

= 2.4GHz 8-core Intel Core i9, Turbo Boost up to 5.0CHz, with 16MB shared L3 cache
= 32GB of 2400MHz DDR4 memory

Memory is 2048 times bigger than cache

Cache Misses

* On cache hit, CPU proceeds normally

* On cache miss
— Stall the CPU pipeline
— Fetch block from next level of hierarchy
— Instruction cache miss

e Restart instruction fetch

— Data cache miss

 Complete data access

Cache replacement policy

* On a hit, return the requested data

* On a miss, load block from lower level in the memory hierarchy
and write in cache; return the requested data

* Policy: Where in cache should the block be written? (With
direct-mapped caches, there’s only one possible location:
block _address % number_of blocks in_cache)

Cache policy for stores

* Policy choice for a hit: Where do we write the data?
— Write-back: Write to cache only

— Write-through: Write to cache and also to the next lowest level of the
memory hierarchy

* Policy choice for a miss

— Write-allocate: Bring the block into cache and then do the write-hit
policy
— Write-around: Write only to memory

Store-hit policy: write-through
* Update cache block AND memory

* Makes writes take longer

— e.g., if base CPl =1, 10% of instructions are stores, write to memory takes 100
cycles

* Effective CPI=1+0.1x100=11

e Solution: write buffer
— Holds data waiting to be written to memory

— CPU continues immediately
* Only stalls on write if write buffer is already full

Store-hit policy: write-back
-mm

0000420 FE FF 3C ..

* Only update the block in cache

— Keep track of whether each block is “dirty”
(i.e., it has a different value than in
memory)

1 0012345 32 AQ0 5C ..

0 0O00OF3CB 00 00 00 ..

* When a dirty block is replaced

© ©O B O O +»r O B

— Write it back to memory
— Can use a write buffer to allow replacing
block to be read first

e Faster than write-through, but more
complex

Store-miss policy: write-allocate

* Read a block from memory (just like a load miss)

* Perform the write according to the store-hit policy (i.e., write in
cache or write in both cache and memory)

* Good for when data is likely to be read shortly after being
written (temporal locality)

Store-miss policy: write-around

* Only write the data to memory

* Good for initialization where lots of memory is written at once
but won’t be read again soon

Store Policies

* Given either high store locality or low store locality, which policies might
you expect to find?

e \Write-allocate: create block in cache. Write-around: don’t create block.
Write-through: update cache + memory. Write-back: update cache only.

High Locality Low Locality

iSOeliect Miss Policy Hit Policy Miss Policy Hit Policy

A Write-allocate Write-through Write-around Write-back
B Write-around Write-through Write-allocate Write-back
C Write-allocate Write-back Write-around Write-through
D Write-around Write-back Write-allocate Write-through

E None of the above

Common policy choices

* Write-back + write-allocate
— Dirty blocks are written to memory only when replaced
— Stores bring block into cache

— Subsequent loads/stores will cause cache hits (unless the block is
evicted)

* Write-through + write-around
— Writes always go to memory
— Cache is mostly for loads

Associative Caches

Direct mapped

* Direct Mapped

Block# 01234567

— Each block goes into 1 spot
— Only search one entry Data
— Associativity = 1

* What if we allow blocks to go e 1
into more than one spot?

Search I

Associative Caches

° Fu”y associative Fully associative

— Allow a given block to go in any
cache entry

— Requires all entries to be Data
searched at once

— Comparator per entry

(expensive) Tag ;

s TITTTTT

Associative Caches

Set associative

* n-way set associative
Set# 0 1 2 3

— Each set contains n entries

— Block number determines which set Data
e (Block number) modulo (#Sets in cache)

— Search all entries in a given set at once

— n comparators (less expensive) Tag

Search T T

Spectrum of associativity for 8-entry cache

One-way set associative
(direct mapped)

Block Tag Data

(1) Two-way set associative
2 Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Memory addresses, block addresses, offsets

o 01 01 0111001 0O011 01011001 01 0@0UDO0T11

Block size of 32 bytes (not bits!) V|Tag |Data |V|Tag |Data
0

16-block, 2-way set associative cache |

Each address 3F2084 ..

— A (32 — 5)-bit block address (in purple an
— A 5-bit offset into the block (in green)

Block address can be divided into
— A (32 — 3 - 5)-bit tag (purple)
— A 3-bit cache index (blue)

15C9AC ..

© ©O BB O O O
© O O o o —» o o

Given a 256-entry, 8-way set associative cache with a block size
of 64 bytes, how many bits are in the tag, index, and offset?

“Thagnis lindecbits | ofsetbits
A 32-5-6=21 5 6
B 32-3-5=24 3 5
C 32-8-6=18 8 6
D 32-6-5=21 6 5
E 32-6—-3=23 6 3

Given a 256-entry, fully associative cache with a block size of 64
bytes, how many bits are in the tag, index, and offset?

“Thagnis lindecbits | ofsetbits
A 32-5-6=21 1 6
B 32-3-5=24 3 5
C 32-8-6=18 8 6
D 32-6-5=21 6 5
E 32-0-6=26 0 6

Replacement Policy

* Direct mapped: no choice

* Set associative
— Prefer non-valid entry, if there is one
— Otherwise, choose among entries in the set
— Goal: Choose an entry we will not use in the future

Replacement Policy

e Least-recently used (LRU)

— Choose the one unused for the longest time
* Simple for 2-way, manageable for 4-way, too hard beyond that

e Random

— Gives approximately the same performance as LRU for high
associativity

|l-cache vs D-cache

PCSrc
M
Add > u
ALU X
4 l Add oq it
Read i
_ | Read - ALUSrc 4 ALU operation
—+|PC address register 1 dea? | MemWrite
| Read o MemtoRe
Instruction ¢ register 2 ALU zero ?
Write Te9ISterS Read AL Ll Address Fiead
Instruction register data 2 M ata
memory ‘)l:
| data !
ata
_| write Data
RegWrite data memory
MemRead ‘
16 Sign- 32
extend

e Separate caches for instruction memory and data memory
* |-cache: instruction cache
* D-cache: data cache

Measuring Cache Performance

* Components of CPU time
— Program execution cycles
* Includes cache hit time

— Memory stall cycles

* Mainly from cache misses

* With simPIifying assumptions:
Memory stall cycles

~ Memory accesses

x Miss rate x Miss penalty
Program

Instructions Misses .
— X xMiss penalty

Program Instruction

Miss Cycles Per Instruction

Given .mm

e |-cache miss rate = 2% .02 * 100 .04 * 100
e D-cache miss rate = 4% B .02 04
: C .02*.36*100 .04 * .36 * 100
* Miss penalty = 100 cycles
D .02 *100 .04 * 36 * 100

e Base CPI (ideal cache) =
e Load & stores are 36% of instructions

Cache Performance Example

* Given

— |-cache miss rate = 2%

— D-cache miss rate = 4%

— Miss penalty = 100 cycles

— Base CPI (ideal cache) =2

— Load & stores are 36% of instructions
* Miss cycles per instruction

— |-cache: 0.02 x 100 = 2

— D-cache: 0.36 x 0.04 x 100 =1.44
e ActualCPI=2+2+1.44=544

— |deal CPU is 2: 5.44/2 =2.72 times faster

Average Access Time

* Hit time is also important for performance

* Average memory access time (AMAT)
— AMAT = Hit time + Miss rate X Miss penalty

 Example
— hit time = 1 cycle, miss penalty = 20 cycles, I-cache miss rate = 5%
— AMAT =

Performance Summary

When CPU performance increased

— Miss penalty becomes more significant
Decreasing base CPI

— Greater proportion of time spent on memory stalls

Increasing clock rate

— Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating system
performance

We need cache to be fast!

Memory lookup time
Hit rate
Size

Frequency of collisions

Reading

e Next lecture: More Caches!
— Section 6.4

* Problem Set 12 due Friday

e Cache Lab (final project) due at the time of the final exam
(which this class doesn’t have)

